Section 6.3 Trigonometric Functions of Any Angle

Defining the trig functions using the Cartesian Coordinate System:

Let θ be an angle in standard position. Let (x, y) be <u>any</u> point P that lies on the terminal side of θ and let r be the distance from the origin to the point P:

$$r = \sqrt{x^2 + y^2}$$
 $\sin \theta = \frac{y}{r}$ $\cos \theta = \frac{x}{r}$ $\tan \theta = \frac{y}{x}$
 $\csc \theta = \frac{r}{y}$ $\sec \theta = \frac{r}{x}$ $\cot \theta = \frac{x}{y}$

coso is positive in the 1st and 4th quadrants

sind is positive in the 1st and and gundrants (x,y)

tano is positive in the 1st and third guadrants

Definition:

Given an angle θ in standard position. The acute angle that is formed using the terminal side of θ and the x-axis is called the **reference angle** of θ .

To find the value of a trigonometric function of any angle θ you can determine the function value for the reference angle θ_r and then affix the appropriate sign (-, +) depending on the quadrant in which θ lies.

Think About It:

What angles will have the same sine as the angle whose measure is 80° ? What angles will have the same cosine as the angle whose measure is 80° ?

To find the value of a trigonometric function of any angle θ you can determine the function value for the reference angle θ_r and then affix the appropriate sign (-,+) depending on the quadrant in which θ lies.

Evaluate the following trigonometric expressions without a calculator:

$$sin 135^{\circ} = \sqrt{2}$$

$$\tan \frac{13\pi}{6} = \frac{\sqrt{3}}{3}$$
reference angle
15 30° on $\frac{\pi}{2}$

$$cos 103\pi$$
 = -1

reference angle

15 0°. \leftarrow

103 π = 51 (2 π) + π

$$\cos\left(-150^{o}\right) = -\frac{\sqrt{3}}{2}$$

$$sec \frac{7\pi}{4} = \sqrt{3}$$
reference angle
15 $\frac{\pi}{4}$ or 45°

$$sin\left(-\frac{23\pi}{4}\right) = \sqrt{2}$$

$$-23\sqrt{2} = -16\sqrt{2} - 7\sqrt{2}$$

$$= -4\sqrt{2} - 7\sqrt{2}$$
reperence angle 13 $\frac{\pi}{4}$

Complimentary Angles are angles whose sum is a right angle. In other words, the compliment of the angle θ is the angle $\frac{\pi}{2} - \theta$.

Investigate the relationship between the sine and cosine of complimentary angles:

Cofunction Identities:

$$\cos\theta = \sin\left(\frac{\pi}{2} - \theta\right)$$
; $\csc\theta = \sec\left(\frac{\pi}{2} - \theta\right)$; $\cot\theta = \tan\left(\frac{\pi}{2} - \theta\right)$
 $\sin\theta = \cos\left(\frac{\pi}{2} - \theta\right)$, $\tan\theta = \cot\left(\frac{\pi}{2} - \theta\right)$

Reciprocal Identities:

$$\csc\theta = \frac{1}{\sin\theta}$$
 ; $\sec\theta = \frac{1}{\cos\theta}$; $\cot\theta = \frac{1}{\tan\theta}$

Quotient Identities:

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
 ; $\cot \theta = \frac{\cos \theta}{\sin \theta}$